Abstract
Experimental and theoretical studies of elastohydrodynamically lubricated contacts normally assume static or quasi-static conditions. Non-steady conditions are, however, common. In this paper the case of a ball impacting a flat lubricated surface is investigated theoretically. This case implies transient conditions and the lubricating effect is due to pure squeeze action. Pressure and film thickness distributions are computed during impact and rebound. The results of the analysis show the effects of ball mass, initial impact velocity, lubricant properties and the thickness of the applied lubricant layer on the minimum film thickness. Increased impact velocity increases the minimum value of film thickness achieved during the bounce. The damping capacity of the lubricating film is very high at low impact velocity and small ball mass. In fact, the damping is so high that no rebound occurs if the velocity or the ball mass are smaller than certain critical values. The thickness of the lubricant layer has no influence on the results if it is greater than a certain value. If the pressure-viscosity coefficient is increased, the film becomes thicker.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.