Abstract

This paper presents the lubrication performance analyses of journal bearing using the fluid–structure coupling method, whereas realistic features of cavitation and deformation are accounted for. The multiphase flow model of journal bearing is established with a mixture model considering both cavitation and thermal effects. Moreover, the hydrodynamic characteristics of journal bearing with cavitation are analyzed with the proposed multiphase flow model and the maximum difference is less than 6% between the simulation results and experimental data, which is then verified through a demonstrative application example. Furthermore, the effects of eccentricity ratio, rotational speed and oil-film thickness on the elastohydrodynamic characteristics of journal bearing with different groove shapes are numerically investigated. The numerical results suggest that groove shapes and operating conditions play the crucial roles in changing the elastohydrodynamic characteristics of journal bearing. The change of groove shapes can improve the load-carrying capacity of journal bearing and decrease the average temperature of oil film.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call