Abstract

The construction of a steady-state Green’s function for a laminated anisotropic circular cylinder is presented herein. The cylinder’s profile through its depth consists of any number of perfectly bonded, uniform thickness concentric cylindrical layers, with each able of having its own distinct elastic cylindrically anisotropic properties. Green’s function is predicated on the superposition of numerically generated modal solutions from a system of equations based on a semi-analytical finite element formulation. Two methods are proposed for its construction, both relying on the same set of eigendata. One is by means of an integral transform. The other may be viewed as the forced vibration of a cylinder with cylindrically monotropic properties under symmetry/antisymmetry conditions on the cross section containing the source load. The second method, being more restrictive with respect to material properties, was intended primarily as a cross-check of the integral transform version of Green’s function. Numerical implementation details are discussed in terms of two example thickness profiles to show the essential keys for the convergence and accuracy of Green’s function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.