Abstract

Recent elastodynamic fracture analysis results are summarized from Heavy-Section Steel Technology (HSST) studies in two major areas that related to assessing nuclear reactor pressure vessel integrity under pressurized-thermal-shock (PTS) conditions. These areas are crack run-arrest behavior in wide plates under nonisothermal conditions and fracture behavior of a thick-wall vessel under combined thermal and pressure loadings. The WP-1 series of HSST wide-plate crack-arrest tests are being performed at the National Bureau of Standards (NBS), Gaithersburg, MD, using specimens from HSST Plate 13A of A533 grade B class 1 steel. The six tests in the WP-1 series are aimed at providing crack-arrest data at temperatures up to and above that corresponding to the onset of the Charpy upper-shelf, as well as providing information on dynamic fracture (run and arrest) processes for use in evaluating improved fracture analysis methods. Elastodynamic analyses have been completed for the actual test conditions of the four tests, WP-1.1 through WP-1.4, conducted thus far in the WP-1 series. In this paper, the computed results are compared with data for crackline strain-time response, crack-propagation speed, arrest location and post-arrest tearing. The paper includes a summary of the arrest toughness calculations compiled in the four tests at temperatures that range from transition to upper-shelf values for the wide-plate material. These same elastodynamic fracture analysis techniques have been applied to the analysis of the first pressurized-thermal-shock experiment (PTSE-1) performed at ORNL. The experiment addressed warm-prestressing phenomena, crack propagation from brittle to ductile regions, and crack stabilization in ductile regions. Test and analysis results are summarized in the paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.