Abstract

An extension of the Eulerian-Lagrangian kinematic description (Haber, 1984) to elastodynamic problems is presented. Expressions are derived for field variables and material time derivatives using the new kinematic description. The variational equation of motion is written in a weak form suitable for use with isoparametric finite elements. The new kinematic model allows a finite element mesh to continuously adjust for changes in the structural geometry, material interfaces, or the domain of the boundary conditions without a discrete remeshing process. Applications of the new model to mode I dynamic crack propagation demonstrates its advantages over moving mesh methods based on conventional Lagrangian kinematic models. Numerical results show excellent agreement with analytic predictions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.