Abstract

When a flexible filament is confined to a fluid interface, the balance between capillary attraction, bending resistance, and tension from an external source can lead to a self-buckling instability. We perform an analysis of this instability and provide analytical formulae that compare favorably with the results of detailed numerical computations. The stability and long-time dynamics of the filament are governed by a single dimensionless elastocapillary number quantifying the ratio between capillary to bending stresses. Complex, folded filament configurations such as loops, needles, and racquet shapes may be reached at longer times, and long filaments can undergo a cascade of self-folding events.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.