Abstract

Surface stress drives long-range elastocapillary interactions at the surface of compliant solids, where it has been observed to mediate interparticle interactions and to alter transport of liquid drops. We show that such an elastocapillary interaction arises between neighboring structures that are simply protrusions of the compliant solid. For compliant micropillars arranged in a square lattice with spacing p less than an interaction distance p^{*}, the distance of a pillar to its neighbors determines how much it deforms due to surface stress: Pillars that are close together tend to be rounder and flatter than those that are far apart. The interaction is mediated by the formation of an elastocapillary meniscus at the base of each pillar, which sets the interaction distance and causes neighboring structures to deform more than those that are relatively isolated. Neighboring pillars also displace toward each other to form clusters, leading to the emergence of pattern formation and ordered domains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.