Abstract

Elastocaloric cooling is one of the most promising solid-state cooling approaches to address the issues of energy shortage and global warming. However, the cooling efficiency and cycle life of this technology need to be improved, and the required driving force shall be reduced. Here, a novel elastocaloric heat pump by periodic non-linear stress is developed by employing fiber twisting and separated cooling and heating media. The non-linear stress generated by fiber twisting yields a hierarchical, rigid-yet-flexible architecture and a periodic entropy spatial distribution, which result in a low mechanical hysteresis work and a high cooling efficiency (a maximum material coefficient of performance (COP) of 30.8 and a maximum Carnot efficiency of 82%). The torsional non-linear stress inhibits crack propagation and results in a highly extended cycle life (14752 cycles, more than ten times of fiber stretching). The heat pump exhibits a maximum average temperature span of 25.6 K, a maximum specific cooling power of 1850W Kg-1, a maximum device COP of 19.5, and a maximum device power of 5.0W, under each optimal condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.