Abstract
Solid state elastocaloric cooling, the endothermic reversible martensitic phase transformation in shape memory alloys, has the potential to replace vapor compression refrigeration. NiTi, Ni2FeGa, and CoNiAl shape memory alloys were experimentally investigated to measure the magnitude of temperature change using thermography during uniaxial tensile experiments. Consecutive tensile cycles were also performed, and they revealed a symmetric temperature profile between the two cycles. The unique, dual camera technique of digital image correlation and thermography was utilized to track the transformation bands and temperature gradients to gain insight about the unloading, endothermic process. Fatigue implications, elevated temperature environments, and the theoretical maximum temperature based on entropy change were discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.