Abstract

Multiple cracks/voids have been extensively seen in structural components. The stress field gets affected due to the crack interaction, so the effect of multiple cracks should be considered in design analysis. Further, due to service load, the stress concentrations are induced at the crack tips, which is the source of failure of the component. Hence, the current work has been proposed to investigate the crack interaction phenomenon in structural components under mechanical loading conditions. A mesh-independent computational approach, namely “Extended Finite Element Method (XFEM),” has been implemented for crack discontinuities modeling. Ramberg–Osgood material model has been used for the nonlinear stress–strain relationship of material. Isotropic hardening has been used with von Mises yield criteria to decide the plasticity condition. Further, nonlinear discrete equations have been solved by the Newton–Raphson iterative scheme. Few crack interaction problems are numerically solved by the presented EPFM approach, and results are presented in the form of fracture parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call