Abstract

ABSTRACT The reciprocating piston seals are crucial parts in the hydraulic system, which are widely used in aerospace and military industry. A direct fluid–structure coupling method with high efficiency is proposed for solving the transient elaso-hydrodynamic-lubrication problem in the hydropneumatic suspension reciprocating piston seal system. A detailed three-dimensional fluid–structure coupling model is built using finite element discretization. Material tests are carried out to obtain the parameters of the third-order Ogden constitutive model of the rubber O-ring. The sealing performance and friction force of the sealing system are analysed for different piston speed. The critical speed from mixed lubrication to full-film lubrication is obtained. Three different micro-asperity geometries on cylinder surface are researched for their influence on piston sealing and lubrication performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call