Abstract

We investigate the properties of high-amplitude stress waves propagating through chains of elastic–plastic particles using experiments and simulations. We model the system after impact using discrete element method (DEM) with strain-rate dependent contact interactions. Experiments are performed on a Hopkinson bar coupled with a laser vibrometer. The bar excites chains of 50 identical particles and dimer chains of two alternating materials. After investigating how the speed of the initial stress wave varies with particle properties and loading amplitude, we provide an upper bound for the leading pulse velocity that can be used to design materials with tailored wave propagation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.