Abstract

An elastic–plastic stress analysis and the expansion of plastic zone in layers of stainless steel fiber-reinforced aluminum metal–matrix laminated plates are studied by using Finite Element Method and First-order shear deformation theory for small deformations. The plate is meshed into 64 elements and 289 nodes with simply supported or clamped boundary conditions. Laminated plates of constant thickness are formed by stacking four layers bonded symmetrically or antisymmetrically. It is assumed that the laminated plates are subjected to transverse uniform loads. Loading is gradually increased from yield point of the plate as 0.0001 MPa at each load step. Load steps are chosen as 100, 150 and 200.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call