Abstract

We presented an elastic-plastic endochronic constitutive model of 0Crl7Ni4Cu4Nb stainless steel based on the plastic endochronic theory (which does not need the yield surface) and experimental stress-strain curves. The key feature of the model is that it can precisely describe the relation of stress and strain under various loading histories, including uniaxial tension, cyclic loading-unloading, cyclic asymmetric-stress axial tension and compression, and cyclic asymmetric-stress axial tension and compression. The effects of both mean stress and amplitude of stress on hysteresis loop based on the elastic-plastic endochronic constitutive model were investigated. Compared with the experimental and calculated results, it is demonstrated that there was a good agreement between the model and the experiments. Therefore, the elastic-plastic endochronic constitutive model provides a method for the accurate prediction of mechanical behaviors of 0Crl7Ni4Cu4Nb stainless steel subjected to various loadings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.