Abstract

Closed-form finite-element empirical solutions are available for elastic-plastic spherical and sinusoidal contact. However, some of these models do not consider the effect of interaction with adjacent asperities or require extensive numerical resources because they employ a full 3-D model. The present work has considered these factors during modeling. The current finite element model (FEM) represents an axisymmetric elastic-plastic sinusoidal surface in contact with a rigid flat for a wide range of material properties and different values of the amplitude to wavelength ratio. The numerical results are compared with the existing elastic-plastic spherical contact model. Empirical equations are derived for the critical pressure at which two surface will reach complete contact. Complete contact occurs when there is no gap remaining between two contacting surfaces. An equation for the critical value of the amplitude of the sinusoidal asperity below which it will deform completely elastically from initial to complete contact is also established. The current study finds that for the cases which have amplitudes that fall below the critical value, and are elastic in nature, that the previously published perfectly elastic model can be used. The results are applicable for almost all kinds of metallic materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.