Abstract

In previous analyses [1, 2, 13], and full-field computational investigations, we found that the near tip plastic fields of cracks on a bimaterial interface do not have a separable form of the HRR type. Nevertheless they appear to be nearly separable in an annular region well within the plastic zone. Asymptotically, as the crack tip is approached, the material system responds like that of a plastically deforming solid bonded to a rigid substrate; in particular, the stress and strain fields in the more compliant (lower hardening) material behave like those of a material with identical plastic properties bonded to a rigid substrate. Furthermore, the asymptotic fields of the interface crack bear strong similarities to mixed mode HRR fields for the homogeneous medium characterized by the plastic properties appropriate to the more (plastically) compliant material. In this investigation, we elucidate the behaviour of the material system over two length scales which are physically relevant, namely, distances comparable to the dominant plastic zone and the crack tip opening displacement. The latter is approximately given by the plastic zone size times and the relevant yield strain. Over length scales comparable to the dominant plastic zone, the stress fields are governed by the characteristics of the weaker (lower yield strength) material. On the other hand, the near tip plastic fields are governed by the strain hardening characteristics of the more plastically compliant (lower hardening) material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call