Abstract

Learning a low-dimensional structure plays an important role in computer vision. Recently, a new family of methods, such as l1 minimization and robust principal component analysis, has been proposed for low-rank matrix approximation problems and shown to be robust against outliers and missing data. But these methods often require heavy computational load and can fail to find a solution when highly corrupted data are presented. In this paper, an elastic-net regularization based low-rank matrix factorization method for subspace learning is proposed. The proposed method finds a robust solution efficiently by enforcing a strong convex constraint to improve the algorithm's stability while maintaining the low-rank property of the solution. It is shown that any stationary point of the proposed algorithm satisfies the Karush-Kuhn-Tucker optimality conditions. The proposed method is applied to a number of low-rank matrix approximation problems to demonstrate its efficiency in the presence of heavy corruptions and to show its effectiveness and robustness compared to the existing methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call