Abstract

We explore micropatterned director structures of aqueous lyotropic chromonic liquid crystal (LCLC) films created on square-lattice cylindrical-micropost substrates. The structures are manipulated by modulating the LCLC mesophases and their elastic properties via concentration through drying. Nematic LCLC films exhibit preferred bistable alignment along the diagonals of the micropost lattice. Columnar LCLC films, dried from nematics, form two distinct director and defect configurations: a diagonally aligned director pattern with local squares of defects, and an off-diagonal configuration with zig-zag defects. The formation of these states appears to be tied to the relative splay and bend free energy costs of the initial nematic films. The observed nematic and columnar configurations are understood numerically using a Landau-de Gennes free energy model. Among other attributes, the work provide first examples of quasi-2D micropatterning of LC films in the columnar phase and lyotropic LC films in general, and it demonstrates alignment and configuration switching of typically difficult-to-align LCLC films via bulk elastic properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.