Abstract

We perform the first-principles to systematically investigate the elastic properties, minimum thermal conductivity and anisotropy of the negative thermal expansion compounds Mn3Cu[Formula: see text]Ge[Formula: see text]N. The elastic constant, bulk modulus, shear modulus, Young’s modulus and Poisson ratio are calculated for all the compounds. The results of the elastic constant indicate that all the compounds are mechanically stable and the doped Ge can adjust the ductile character of the compounds. According to the values of the percent ratio of the elastic anisotropy A[Formula: see text], A[Formula: see text] and A[Formula: see text], shear anisotropic factors A1, A2 and A3, all the Mn3Cu[Formula: see text]Ge[Formula: see text]N compounds are elastic anisotropy. The three-dimensional diagrams of elastic moduli in space also show that all the compounds are elastic anisotropy. In addition, the acoustic wave speed, slowness, minimum thermal conductivity and Debye temperature are also calculated. When the ratio of content for Cu and Ge arrived to 1:1, the compound has the lowest thermal conductivity and the highest Debye temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.