Abstract
A challenging task in nonlocal continuum mechanics consists in formulating constitutive relations leading to well-posed structural problems. Several strategies have been adopted to overcome issues inherent applicability of Eringen’s pure nonlocal theory to nanostructures, such as local/nonlocal mixtures of elasticity and integral models involving modified averaging kernels. These strategies can be applied to the ill-posed problem of flexure of a beam on Wieghardt nonlocal foundation without considering any fictitious boundary forces of constitutive type. A consistent formulation of nonlocal elastic foundation underlying a Bernoulli–Euler beam is thus conceived in the present paper by requiring that transverse displacements are convex combination of reaction-driven local and nonlocal phases governed by Winkler and Wieghardt laws, respectively. The proposed integral mixture is proven to be equivalent to a more convenient differential problem, equipped with nonlocal boundary conditions, which can be effectively exploited to solve nonlocal problems of beams resting on mixture reaction-driven continuous foundation. Effectiveness of the developed nonlocal approach is illustrated by analytically solving simple elasto-static problems of structural mechanics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.