Abstract
The giant protein titin plays a critical role in regulating the passive elasticity of muscles, mainly through the stochastic unfolding and refolding of its numerous immunoglobulin domains in the I-band of sarcomeres. The unfolding dynamics of titin immunoglobulin domains at a force range greater than 100 pN has been studied by atomic force microscopy, while that at smaller physiological forces has not been measured before. By using magnetic tweezers, it is found that the titin I27 domain unfolds in a surprising non-monotonic force-dependent manner at forces smaller than 100 pN, with the slowest unfolding rate occurring around 22 pN. We further demonstrate that a model with single unfolding pathway taking into account the elasticity of the transition state can reproduce the experimental results. These results provide important novel insights into the regulation mechanism of the passive elasticity of muscle tissues.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.