Abstract

A study of the high-pressure anisotropy of MgO was conducted using first-principles calculations based on density functional theory within the generalized gradient approximations. The pressure dependence of the elastic stiffness coefficients and the anisotropy parameters, in both B1 and B2 phases, shows that for high-hydrostatic compression the easiest deformation is the shear along (100) plane and the the material's response to deformation and to shearing strains is quite the same. According to the calculations of the velocities of propagation of elastic waves, we deduced that MgO develop an elastic anisotropy, especially, in the B1 phase. We present the B2 phase elastic properties which are not already studied under high pressure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.