Abstract
The mechanical properties of passive blood vessels are generally thought to depend on the parallel arrangement of elastin and collagen with linear elasticity and collagen recruitment depending on vessel strain [hook-on (HO) model]. We evaluated an alternative model [serial element (SE) model] consisting of the series arrangement of an infinite number of elements, each containing elastin with a constant elastic modulus and collagen that switches stepwise from slack (zero stress) to fully rigid (infinite stiffness) on ongoing element strain. Both models were implemented with Weibull distributions for collagen recruitment strain (HO model) and collagen tightening strain (SE model). The models were tested in experiments on rat mesenteric small arteries. Strain-tension relations were obtained before and after two rounds of digestion by collagenase. Both models fitted the data prior to digestion. However, for the HO model, this required unrealistically low estimates for collagen recruitment or elastic modulus and unrealistically high estimates for distension of collagen fibers. Furthermore, the data after digestion were far better predicted by the SE model compared with the HO model. Finally, the SE model required one parameter less (collagen elastic modulus). Therefore, the SE model provides a valuable starting point for the understanding of vascular mechanics and remodeling of vessels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American journal of physiology. Heart and circulatory physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.