Abstract

The main models of phantom and topologically entangled polymer networks are surveyed. A theory of anisotropic and nonaffine deformation of both swollen and deswollen (with partial solvent removal) strongly entangled polymer networks in athermal and θ-solvents has been developed. It is shown that under weak anisotropic deformations of the deswollen network, the entanglement tube consists of fractal loopy globules. In a θ-solvent, slight deformations of the network lead to a decrease in the overlap of loopy globules without changing their sizes. Deformations of swollen networks, as well as strong deformations of deswollen networks, are described in terms of the slip-tube model. An effective Hamiltonian has been derived that determines the entropy of fractal loopy globules. Based on the Hamiltonian, it is shown that topological constraints can be described using the polymer–quantum diffusion analogy. The connection between topological and quantum entanglements is demonstrated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call