Abstract

Compression behaviors of CaIrO3 with perovskite (Pv) and post-perovskite (pPv) structures have been investigated up to 31.0(1.0) and 35.3(1) GPa at room temperature, respectively, in a diamond-anvil cell with hydrostatic pressure media. CaIrO3 Pv and pPv phases were compressed with the axial compressibility of βa > βc > βb and βb > βa > βc, respectively and no phase transition was observed in both phases up to the highest pressure in the present study. The order of axial compressibility for pPv phase is consistent with the crystallographic consideration for layer structured materials and previous experimental results. On the other hand, Pv phase shows anomalous compression behavior in b axis, which exhibit constant or slightly expanded above 13 GPa, although the applied pressure remained hydrostatic. Volume difference between Pv and pPv phases was gradually decreased with increasing pressure and this is consistent with the results of theoretical study based on the ab initio calculation. Present results, combined with theoretical study, suggest that these complicate compression behaviors in CaIrO3 under high pressure might be caused by the partially filled electron of Ir4+. Special attention must be paid in case of using CaIrO3 as analog materials to MgSiO3, although CaIrO3 exhibits interesting physical properties under high pressure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.