Abstract

A comparative analysis of the elasticity, microstructure and thermal stability of fibres (thickness ranging from 43.4 to 189.4 µm) isolated from pineapple leaves (PALF), coconut coir (COIR), banana leaf-stem (BAN) and oil palm empty fruit bunch (OPEFB) reported in this study. Statistical analysis of the mechanical properties derived from tensile test to rupture reveals significant differences (P<0.05) in the fibre strength (σ), stiffness (E) and extensibility (parameterized by the strain to rupture, ɛ). It is observed that COIR fibres yield the smallest strength, σ (=99.8±22.5 MPa), and stiffness, E (= 0.5±0.1 GPa), while PALF fibres yield the largest σ (=639.5±301.6 MPa) and E (=7.1±3.1 GPa); PALF fibres exhibit the smallest ɛ (=0.11±0.03) but OPEFB fibres yield the largest ɛ (=2.0±1.3). From scanning electron micrographs, it is observed that cellulose fibril rupture predominates in OPEFB, COIR and BAN fibres; a large proportion of the cellulose fibrils fail by pullout in PALF fibres. Thermogravimetric analysis reveals that all fibres are thermally stable up to 250 °C; the fibre residue ranges from 30 to 80 wt% after heating to 500 °C. In particular, BAN experiences the highest weight loss and PALF experiences the lowest weight loss. The findings lend to a simple approach for determining the performance of the composites by assessing the type of natural fibres for reinforcing polymeric matrices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call