Abstract

When a Newtonian bubble ruptures, the film retraction dynamics is controlled by the interplay of surface, inertial, and viscous forces. In case a viscoelastic liquid is considered, the scenario is enriched by the appearance of a new significant contribution, namely, the elastic force. In this paper, we investigate experimentally the retraction of viscoelastic bubbles inflated at different blowing rates, showing that the amount of elastic energy stored by the liquid film enclosing the bubble depends on the inflation history and in turn affects the velocity of film retraction when the bubble is punctured. Several viscoelastic liquids are considered. We also perform direct numerical simulations to support the experimental findings. Finally, we develop a simple heuristic model able to interpret the physical mechanism underlying the process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.