Abstract

We study the high-pressure stability and elastic properties of Mg3Al2Si3O12 pyrope garnet using the density functional first principles computation method. Pyrope garnet is found to dissociate into an assemblage of MgSiO3 Mg-perovskite (Pv) and Al2O3 corundum (Cor) solid solutions at ∼19.7GPa at static conditions. Then, this assemblage undergoes a phase transition to pyropic (Al-bearing) Pv at ∼65GPa. The enthalpy of an assemblage of MgAl2O4 calcium ferrite (CF), MgPv, and stishovite (St) is less stable than that of MgPv plus Cor. A continuous reaction in the MgSiO3–Al2O3 system suggested by this study is consistent with previous experimental and computational studies but not with a recently modeled phase diagram. This implies that the formation of pyropic Pv could not cause any seismic scatterers in the mid-lower mantle. The investigated anisotropy of elastic velocities further indicates that pyrope garnet is a very isotropic mineral. Our results suggest that seismological anisotropy inferred in the upper mantle could not be due to garnet.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.