Abstract

The elastic properties of the unusual crystals encountered in surfactantrich solutions are investigated. Triply-periodic minimal surfaces provide a convenient frame-work for the understanding of such materials but, as is shown, degeneracy leads to vanishing elastic coefficients in the framework of the classical Helfrich energy. This degeneracy is lifted by higher-order corrections and by finite temperature effects. We show that, as a result, thermodynamic stability can be achieved at low levels of dilution but that with increasing dilution the P surface inevitably melts. The degeneracy also leads to an unusual collective excitation spectrum which has a smectic-like undulation dispersion, except at very long wavelengths where it becomes sound-like. The elastic moduli are found to have the same dependence on temperature and concentration as those of tethered stacked membranes and the shear moduli have a temperature and material independent ratio.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.