Abstract

The dynamic response of a prestressed incompressible Mooney material is studied by investigating plane wave propagation and the response of the material to impulsive lines of force. The choice of an initial deformation which is axially symmetric gives a particularly simple form for the secular equation for the plane wavefront velocities. The speeds of propagation and the amplitudes of the two permissible transverse waves are found and necessary and sufficient conditions for there to exist two real wave speeds in all directions are established. The simple form of the secular equation enables the response of the material to concentrated disturbances to be readily solved using Fourier transforms. The motions caused by a line of impulsive forces is examined in some detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call