Abstract
In this paper, the normal modes of an elastic rectangular waveguide are analyzed. We retrace the key aspects of the almost 150-year history of this problem. Using the superposition method, we have obtained an analytical solution of the problem for four types of symmetry of the wave field. In addition, we have established important differences of the dispersion characteristics of normal modes in a rectangle from the Rayleigh–Lamb modes for an infinite plate and the Pochhammer–Chree modes for a cylinder. We give also an estimate of a series of approximate theories for a rectangular waveguide. J. Fourier [28, Sec. 13]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.