Abstract

A fluid-saturated packing of like elastic spheres is used as a model of an oceanic sediment and a method is presented for calculating the effective velocities of elastic waves in such a medium. In particular the method is applied to low-frequency waves travelling vertically down a cubic packing, saturated with an inviscid fluid and initially at rest under a uniform compressive force. It is found that two waves propagate and moreover, that their velocities are not related through the usual equations of classical elasticity to the effective elastic moduli for static deformation of the packing. For a dry packing, there is found to exist a ‘cut-off’ frequency above which the wave decays with depth. An extension of the method to slightly viscous fluids is also given.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call