Abstract
An optimization problem is proposed for inferring physical properties of polycrystals given ultrasonic (elastic) wave velocity measurements, made across multiple sample orientations. The feasibility of the method is demonstrated by inferring both the effective grain elastic parameters and the grain c -axis orientation distribution function (ODF) of ice-core samples from Priestley glacier, Antarctica. The method relies on expanding the ODF in terms of a spherical harmonic series, which allows for a non-parametric estimation of the sample ODF. Moreover, any linear combination of the Voigt (strain) and Reuss (stress) homogenization scheme is allowed, although for glacier ice, the exact choice is found to matter little for bulk elastic behaviour, and thus for inferred physical properties, too. Finally, the accuracy of the inferred grain elastic parameters is discussed, including the well-posedness and shortcomings of the inverse problem, relevant for future adoptions in glaciology, geology and elsewhere.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.