Abstract
Recent studies have shown that the mechanical properties of bioinspired periodic composite materials can be strongly influenced by finite deformation effects, leading to highly nonlinear static and dynamic behaviors at multiple length scales. For instance, in porous periodic nacre-like microstructures, microscopic and macroscopic instabilities may occur for a given uniaxial loading process and, as a consequence, wave attenuation properties may evolve as a function of the microstructural evolution, designating it as metamaterials. The numerical outcomes provide new opportunities to design bioinspired, soft composite metamaterials characterized by high deformability and enhanced elastic wave attenuation capabilities given by the insertion of voids and lead cores.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.