Abstract

Wave propagation in the ordered and randomly disordered periodic track structure in high-speed railways are investigated theoretically and experimentally. Taking the CRTS-I double-block ballastless track structure in China as the research object, a theoretical model of periodic track structure is established. The rail is modelled as a Timoshenko beam considering the bending–torsional coupling. The dispersion curves of the periodic track structure are obtained according to the transfer matrix method and Bloch theory. Based on the Lyapunov exponent algorithm, the elastic wave propagation characteristics of the randomly disordered periodic track structure are further calculated and analyzed considering the random disorder of structure parameters. The obtained results show that the periodic track structure is characterized by band gaps, elastic wave propagation attenuates significantly within the band gap, and random disorder in the track structure can expand the attenuation regions. Finally, the band gap characteristics of the vertical/lateral flexural wave and torsional wave are verified respectively through an in situ experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.