Abstract

Valley Hall topological insulators (VHTIs) hold great promise for enhancing the manipulation of elastic wave propagation by their intrinsic topologically protected mechanism. Different from most of VHTIs designed by the deterministic Dirac degeneracy, a more flexible design of VHTIs is proposed by the accidental Dirac degeneracy to steer elastic wave propagation. Based on the accidental Dirac degeneracy, a kind of hexagonal phononic crystal is designed to independently control the topological phase transitions at different frequency ranges. Consequently, a two-channel topological demultiplexer is designed with the function of frequency separation for flexural waves, and its effectivity is verified by numerical simulations and experimental testing. Comparing with traditional designs of demultiplexers, the VHTIs-based demultiplexer possesses a series of advantages in robust performance, easy fabrication and low energy leakage, and sheds light on developing new generation of elastic wave devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.