Abstract

In the present work, solutions are recapitulated according to the theory of elasticity for the deformations of an adhesive spherical inhomogeneity in an infinite matrix under remote uniform axial and axial-symmetrical radial tension. Stress fields in the inhomogeneity and at the interface in the matrix are provided, too. It is shown that the sphere is deformed to a spheroid under any of the loading cases considered. Due to the axial-symmetric setup of the problem, the deformation is fully described by the two displacement values at line segments on the principal axes of the spheroid. The displacements depend on the applied remote load and on two traction fields at the inhomogeneity-matrix interface. For any combination of inhomogeneity and matrix stiffness, the condition of compatibility of deformations yields a system of two linear equations with the two magnitudes of the tractions as unknowns. Thus, the problem is reduced to a formulation for solving a twofold statically indetermined structure. The system is solved and the exact solution of the general spherical inhomogeneity problem with differing stiffness in terms of Young’s moduli and Poisson’s ratios of inclusion and matrix is presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call