Abstract

In this paper an elastic settlement analysis method for rigid rectangular footings applicable to both clays and sands is proposed. The proposed method is based on the concept of equivalent shape, where any rectangular footing is suitably replaced by a footing of elliptical shape; the conditions of equal area and equal perimeter are satisfied simultaneously. The case of clay is differentiated from the case of sand using different contact pressure distribution, whilst, additionally, for the sands, the modulus of elasticity increases linearly with depth. The method can conveniently be calibrated against any set of settlement data obtained analytically, experimentally, or numerically; in this respect the authors used values which have been derived analytically from third parties. Among the most interesting findings is that sands produce “settlement x soil modulus/applied pressure” values approximately 10% greater than the respective ones corresponding to clays. Moreover, for large Poisson’s ratio (v) values, the settlement of rigid footings is closer to the settlement corresponding to the corner of the respective flexible footings. As v decreases, the derived settlement of the rigid footing approaches the settlement value corresponding to the characteristic point of the respective flexible footing. Finally, corrections for the net applied pressure, footing rigidity, and non-elastic response of soil under loading are also proposed.

Highlights

  • The problem of settlement of shallow foundations is among the more important ones in classical soil mechanics

  • Numerical results for perfectly smooth, uniformly loaded rectangular rafts, of any rigidity resting on a homogeneous elastic layer which is underlain by a rough rigid base, were presented in graphical form by Fraser and Wardle [12]

  • The proposed method is based on the concept of equivalent shape, where any rectangular B × L footing is suitably replaced by a footing of elliptical shape

Read more

Summary

Introduction

The problem of settlement of shallow foundations is among the more important ones in classical soil mechanics. In this paper an elastic settlement analysis method for rigid rectangular footings applicable to both clays and sands is proposed. The suitability of the equivalent shape concept is deeply investigated aiming at the production of analytical expressions for the elastic settlement analysis of rigid rectangular footings on sands and clays. As shown, this concept is only valid when the equivalent shape satisfies both the condition of equal area and equal perimeter length at the same time.

Settlement of Rigid Elliptical Footing
Stresses
Comparison
LatBthe
H 1 under or their
Correction
Correction for the Net Applied Pressure
Non-Elastic Response of Soil under Loading
Comparison with Existing Methods and Approaches
Comparison example:
Comparison against 3D Finite Element Elastic Settlement Analysis
Findings
Summary and Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.