Abstract
The ocean bottom node (OBN) seismic acquisition system is designed to gather high-fidelity, wide-azimuth, and long-offset four-component (4C) data, which includes shear waves and enables the use of the elastic assumption in imaging and inversion. However, deploying geophysical instruments on the seafloor is difficult and costly, leading to the usual adoption of sparse node spacing. This can, however, lead to poor illumination and imaging challenges, especially in the shallow subsurface near the seafloor. To address these issues in the context of 4C elastic imaging, we propose a deep learning-based method using a multi-scale convolutional neural network (Ms-CNN) to improve the imaging quality of OBN surveys with sparse data acquisition. As an alternative to interpolating the sparse seismic data in the data domain, which can be a challenging task due to the limitations attributed to sampling theorem and the often larger amounts of data compared to the image, we train an Ms-CNN in a supervised fashion to map from sparse data images of PP and PS sections produced by 4C Gaussian beam migration to the equivalent dense data images, allowing for the direct processing of sparse data to improve imaging quality. Here, we combine the mean absolute error and multiscale structure similarity index measure in the loss function to optimize the network’s training process, and to help improve the performance. The effectiveness of the method is demonstrated through experiments on synthetic and field data, resulting in improved event continuity and reduced noise in migration results from sparse OBN acquisitions.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Geoscience and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.