Abstract

We present a theoretical formalism for scattering of the twisted neutrons by nuclei in a kinematic regime where interference between Coulomb interaction and the strong interaction is essential. Twisted neutrons have definite quantized values of an angular momentum projection along the direction of propagation, and we show that it results in novel observable effects for the scattering cross section, spin asymmetries and polarization of the scattered neutrons. We demonstrate that additional capabilities provided by beam's orbital angular momentum enable new techniques for measuring both real and imaginary parts of the scattering amplitude. Several possible observables are considered, for which the targets may be either well-localized with respect to the spatial beam profile, or the scattering occurs incoherently on nuclei in a bulk target. The developed approach can be applied to other nuclear reactions with strongly interacting twisted particles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.