Abstract

The Bialas–Bzdak model of elastic proton–proton scattering is generalized to the case when the real part of the parton–parton level forward scattering amplitude is nonvanishing. Such a generalization enables the model to describe well the dip region of the differential cross-section of elastic scattering at the intersecting storage rings (ISR) energies, and improves significantly the ability of the model to describe also the recent TOTEM data at [Formula: see text] LHC energy. Within this framework, both the increase of the total cross-section, as well as the decrease of the location of the dip with increasing colliding energies, is related to the increase of the quark–diquark distance and to the increase of the "fragility" of the protons with increasing energies. In addition, we present and test the validity of two new phenomenological relations: one of them relates the total p+p cross-section to an effective, model-independent proton radius, while the other relates the position of the dip in the differential elastic cross-section to the measured value of the total cross-section.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.