Abstract

The potential of interaction between oxygen and silicon atoms in a range of interatomic distances within 0.75–11.5 au has been calculated from first principles (ab initio) using the multiconfigurational interaction (MRCI) method with the aug-pp-AVQZ basis set of atomic wave functions. An analytical approximation of the numerically calculated potential is presented. The elastic scattering of oxygen on silicon was studied in the 10–500 eV range of relative kinetic energies. The obtained differential, integral, and transport scattering cross sections and the proposed interatomic potential can be used in the field of nanotechnologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.