Abstract
The microscopic optical potential of nucleus-nucleus interaction is presented via a folding method with the isospin dependent complex nucleon-nuclear potential, which is first calculated in the framework of the Dirac–Bruecker–Hartree–Fock approach. The elastic scattering data of 6He at 229.8 MeV on 12C target are analyzed within the standard optical model. To take account of the breakup effect of 6He in the reaction an enhancing factor 3 on the imaginary potential is introduced. The calculated 6He+12C elastic scattering differential cross section is in good agreement with the experimental data. Comparisons with results in the double-folded model based on the M3Y nucleon-nucleon effective interaction and the few the body Glauber-model calculations are discussed. Our parameter free model should be of value in the description of nucleus-nucleus scattering, especially unstable nucleus-nucleus systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.