Abstract

Geographic routing has been considered as an efficient, simple and scalable routing protocol for wireless sensor networks, since it exploits pure location information instead of global topology information to route data packets towards a static sink. Recently, a number of research works have shown that mobile sinks can achieve high energy efficiency and load balance than static ones. In order to receive data packets continuously, a mobile sink must update its location to the source frequently. However, frequent location updates of mobile sinks may lead to both rapid energy consumption of the sensor nodes and increased collisions in wireless transmissions. The authors propose a novel geographic routing for mobile sinks to address this issue. The proposed scheme takes advantage of wireless broadcast transmission nature of wireless sensor nodes. When a sink moves, the new location information is propagated along the reverse geographic routing path to the source during data delivery. Analysis and simulation results indicate that elastic routing is superior to other protocols in terms of control overhead, data delivery delay and energy consumption.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.