Abstract

This paper investigates the dynamic parametric characteristic of the elastic ring squeeze film damper (ERSFD). Firstly, the coupled oil film Reynolds equations and dynamic equations of an ERSFD supported rotor system are established. The finite differential method and numerical simulation are used to analyze the oil film pressure distribution, bearing capacity of ERSFD, oil film stiffness and damping characteristics during a vibration period. Then, based on the oil film pressure results, the deformation of elastic ring is revealed by the finite element method. Finally, pedestal contact status is analyzed according to the change of oil film thickness during a vibration period. The results reveal that the oil film pressure is sectionally continuous, the deformation of elastic ring is complex under the compression of inner and outer oil film, and different pedestal contacts occur in a vibration period. The level of nonlinearity of the bearing capacity, oil film stiffness and damping can be effectively lightened by application of the elastic ring.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.