Abstract
Micro-Finite Element analysis (μFEA) has become widely used in biomechanical research as a reliable tool for the prediction of bone mechanical properties within its microstructure such as apparent elastic modulus and strength. However, this method requires substantial computational resources and processing time. Here, we propose a computationally efficient alternative to FEA that can provide an accurate estimation of bone trabecular mechanical properties in a fast and quantitative way. A lattice element method (LEM) framework based on the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) open-source software package is employed to calculate the elastic response of trabecular bone cores. A novel procedure to handle pore-material boundaries is presented, referred to as the Firm and Floppy Boundary LEM (FFB-LEM). Our FFB-LEM calculations are compared to voxel- and geometry-based FEA benchmarks incorporating bovine and human trabecular bone cores imaged by micro Computed Tomography (μCT). Using 14 computer cores, the apparent elastic modulus calculation of a trabecular bone core from a μCT-based input with FFB-LEM required about 15 min, including conversion of the μCT data into a LAMMPS input file. In contrast, the FEA calculations on the same system including the mesh generation, required approximately 30 and 50 min for voxel- and geometry-based FEA, respectively. There were no statistically significant differences between FFB-LEM and voxel- or geometry-based FEA apparent elastic moduli (+24.3% or +7.41%, and +0.630% or -5.29% differences for bovine and human samples, respectively).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.