Abstract

Rebound effects can be caused for a blast door under explosion loadings of conventional weapons. Such effects reaching a certain extent can lead to severe reversed stresses and even destroy the hinge and lock system before the door leaf. In this study, an analytical model for the elastic rebound of a blast door under explosion loadings was proposed and analyzed. Based on the calculations, the effects of aspect ratio and load duration on the rebound behavior were analyzed. Furthermore, for extension of the analysis from the elastic to plastic range, comparison of the solutions with the analytical ones was made. The results showed that the positive and negative dynamic shear force peaks of the blast door deceased gradually with the aspect ratio, whereas the rebound strength was inversely proportional to the load duration. For blast doors entering into the plastic stage, the rebound behavior was similar to the elastic stage, implying that the design of a blast door can be based on its characteristics in elastic stage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.