Abstract
A nondestructive technique is described for the measurement of elastic constants of isotropic plates using ultrasonic Rayleigh-Lamb waves. The experimental method employs continuous harmonic waves and a pair of variable-angle contact transducers in pitch-catch mode. The phase velocity of the R-L waves at a particular frequency is determined from the phase shift over a measured path length. This simple experimental technique can measure phase velocity over the range 1–10 mm/µs with an error of less than 0.5% over a frequency range of 50 kHz-2 MHz. Individual symmetric and antisymmetric modes can be generated through the selection of transducer angle and frequency. Young's modulus and Poisson's ratio for the material are calculated from measurements of frequency and phase velocity by a nonlinear least squares solution to the dispersion equations. The sensitivity of the nonlinear least squares function to the measurement region of the dispersion curve is investigated. It was found that estimations of material properties are more accurate and less sensitive to small experimental errors when only selected frequencies and R-L modes are used in the least squares calculation. This technique is demonstrated with several isotropic materials and with both thick (6 mm) and thin (0.8 mm) plates. Values for elastic constants determined by the contact transducer Lamb wave technique compare favorably with values measured using the pulse-echo-overlap method. The uncertainty in measurements of Young's modulus and Poisson's ratio was less than 1% and 2%, respectively. The technique has advantages over more traditional methods for measuring elastic properties when it is desirable to use wavelengths greater than the plate thickness, when properties may vary with frequency, or when it is necessary to measure in-plane elastic properties of thin plate structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.