Abstract

Using Hubbard-Beeby approach for phonon dynamics, in conjunction with our recently proposed model pseudopotential; phonon frequencies for longitudinal and transverse modes are computed and associated elastic properties of technologically important Zr-based Zr50Cu43Ag7 bulk metallic glass (BMG) are evaluated. Five different forms of the static local field correction functions, viz., Hartree etal. (H), Taylor et al. (T), Ichimaru and Utsumi et al. (IU), Farid et al. (F) and Sarkar et al. (S) are employed to investigate the influence of the screening effect on the vibrational dynamics of Zr50Cu43Ag7 BMG. Results for bulk modulus, modulus of rigidity, Poisson's ratio, Young modulus, propagation velocity of elastic waves and dispersion curves are studied. The theoretical computations are found to be in good agreement with the available experimental results, which confirms the use of our model pseudopotential to study elastic properties of such a glassy system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call