Abstract

The elastic properties of two-dimensional continuous composites of fractal structures are studied with the set of Sierpinski-like carpets filled by voids or rigid inclusions. The effective elastic moduli of these carpets are calculated numerically using the finite-element and position-space renormalization group techniques. The fixed-point problem is analyzed by flow diagrams in the plane of the current Poisson ratios and coefficients of anisotropy of the composites. It is found that in the general case the effective elastic moduli asymptotically approach a power-law behavior. Moreover, the common exponent characterizes the scaling behavior of each component of the elastic modulus tensor of a definite carpet. The values of the scaling exponents and positions of the fixed points are shown to be independent of the elastic properties of the host and depend significantly on the fractal dimension of the composite.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call